ADDITIONAL MATHEMATICS	0606/22
Paper 2	October/November 2019
MARK SCHEME	

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1		B1	
			B1

Question	Answer	Marks	Guidance
4	$\begin{aligned} & k x+3=x^{2}+5 x+12 \\ & \rightarrow x^{2}+(5-k) x+9(=0) \end{aligned}$	M1	Equate and attempt to simplify to all terms on one side.
	Use discriminant of their quadratic.	M1	dep
	$(5-k)^{2}-36$ oe	A1	Unsimplified
	$k=-1$ and 11	A1	Both boundary values
	$-1<k<11$	A1	Must be in terms of k.
	OR $2 x+5 \sim k$	M1	Connect gradients of line and curve
	$\begin{aligned} & y=(2 x+5) x+3 \rightarrow \\ & 2 x^{2}+5 x+3=x^{2}+5 x+12 \end{aligned}$	M1	Eliminate k and y.
	$x^{2}=9 \rightarrow x= \pm 3$	A1	
	$k=11$ or $k=-1$	A1	
	$-1<k<11$	A1	
5(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 k}{(x+1)^{3}}$	B1	oe Unsimplified
	$\begin{aligned} & \text { Gradient of normal }=\frac{(x+1)^{3}}{2 k} \\ & \text { or } \\ & \text { Gradient of tangent }=-3 \end{aligned}$	M1	$\begin{aligned} & \text { Gradient of normal }= \\ & \frac{-1}{\text { gradient of tangent }} \end{aligned}$
	$\frac{8}{2 k}=\frac{1}{3}$ or $\frac{2 k}{8}=-3$	M1	Equate gradient of normal to $\frac{1}{3}$ at $x=1$ or equate gradient of tangent to -3 at $x=1$
	$k=12$	A1	
5(ii)	$x=2 \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{8}{9} \text { or their } \frac{-2 k}{27}$	B1	FT
	$y=\frac{4}{3} \text { or their } \frac{k}{9}$	B1	FT
	$\frac{y-\frac{4}{3}}{x-2}=-\frac{8}{9} \text { or } y=-\frac{8}{9} x+\frac{28}{9}$	B1	isw

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}+1}+\frac{\frac{1}{\cos x}+1}{\frac{\sin x}{\cos x}}$	M1	Use $\tan x=\frac{\sin x}{\cos x}$ and $\sec x=\frac{1}{\cos x}$ throughout
	$\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}$	M1	dep Multiply by $\cos x$
	$\frac{\sin ^{2} x+1+2 \cos x+\cos ^{2} x}{(1+\cos x) \sin x}$	M1	dep Add their fractions correctly and expand $(1+\cos x)^{2}$ correctly
	$\frac{2(1+\cos x)}{(1+\cos x) \sin x}$	M1	dep Use $\sin ^{2} x+\cos ^{2} x=1$ and take out a factor of 2 .
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.
	OR $\frac{\tan ^{2} x+(\sec x+1)^{2}}{\tan x(\sec x+1)}$	M1	Add fractions
	$=\frac{2 \sec ^{2} x+2 \sec x}{\tan x(\sec x+1)}$	M1	dep Expand brackets correctly and use $1+\tan ^{2} x=\sec ^{2} x$
	$\frac{2 \sec x}{\tan x}$	M1	$\begin{aligned} & \text { dep } \\ & \text { Cancel } \sec x+1 \end{aligned}$
	$\frac{2}{\cos x} \times \frac{\cos x}{\sin x}$	M1	dep Use $\tan x=\frac{\sin x}{\cos x}$ and $\sec x=\frac{1}{\cos x}$ oe
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.
6(ii)	$3 \sin ^{2} x+\sin x-2=0$ oe	B1	Obtain three term quadratic.
	$(3 \sin x-2)(\sin x+1)=0$	M1	Solve three term quadratic
	$41.8^{\circ} \mathrm{awrt}$	A1	
	$138.2^{\circ} \mathrm{awrt}$	A1	Mark final answers This mark is not awarded if there are more solutions in the range.

Question	Answer	Marks	Guidance
7(a)	$2 \times 4 \times p=40 \rightarrow p=5$	B1	May be obtained later.
	$(x-2)(x-4)(x-p)=0$	M1	Factorise cubic
	$a=-11$	A1	Expand and identify
	$b=38$	A1	
	OR $2 \times 4 \times p=40 \rightarrow p=5$	B1	May be obtained later.
	Obtain equations $4 a+2 b=32$ $16 a+4 b=-24$ and attempt to solve	M1	
	$a=-11$	A1	
	$b=38$	A1	
7(b)	Find $x=-1$	M1	Trial value/s and finds a root or shows that $(x+1)$ or $(x+4)$ or $(x-10)$ divides into $x^{3}-5 x^{2}-46 x-40$.
	$\begin{aligned} & (x+1)\left(x^{2}-6 x-40\right)(=0) \\ & \text { or }(x+4)\left(x^{2}-9 x-10\right)(=0) \\ & \text { or }(x-10)\left(x^{2}+5 x+4\right)(=0) \end{aligned}$	A1	Factorise to give linear and quadratic factor
	$(x+1)(x+4)(x-10)(=0)$	M1	Solve the quadratic to give 2 roots
	$x=-1,-4,10$	A1	
	OR Uses factor theorem to find a root $\begin{aligned} & (-1)^{3}-5\left(-1^{2}\right)-46(-1)-40 \\ & \text { or }-1-5+46-40=0 \\ & \rightarrow x=-1 \end{aligned}$	M1	This may be awarded for $x=-4$ or $x=10$.
	Uses factor theorem to attempt to find further roots	M1	At least two more trials.
	$\begin{aligned} & (-4)^{3}-5(-4)^{2}-46(-4)-40 \\ & \text { or }-64-80+184-40=0 \\ & \rightarrow x=-4 \end{aligned}$	A1	
	$\begin{aligned} & (10)^{3}-5(10)^{2}-46(10)-40 \\ & \text { or } 1000-500-460-40=0 \\ & \rightarrow x=10 \end{aligned}$	A1	

Question	Answer	Marks	Guidance
8(i)	$\sqrt{5^{2}+12^{2}}=13$	M1	
	$\boldsymbol{v}_{A}=-\frac{5}{2} \mathbf{i}-6 \mathbf{j} \text { or } \frac{1}{2}(-5 \mathbf{i}-12 \mathbf{j})$	A1	
8(ii)	$\left\|v_{B}\right\|=\sqrt{12^{12}+(-9)^{2}}$	M1	Use Pythagoras
	15	A1	Do not allow ± 15. Mark final answer.
8(iii)	$\boldsymbol{r}_{A}=\binom{20}{-7}+t\binom{-2.5}{-6}$ or $\boldsymbol{r}_{A}=(20-2.5 t) \mathbf{i}+(-7-6 t) \mathbf{j}$	B1	FT on their \boldsymbol{v}_{A} only if of the form $k(-5 \mathbf{i}-12 \mathbf{j})$ where $k \neq 1$ or 0 .
	$\boldsymbol{r}_{B}=\binom{-67}{11}+t\binom{12}{-9}$ or $\boldsymbol{r}_{\boldsymbol{B}}=(-67+12 t) \mathbf{i}+(11-9 t) \mathbf{j}$	B1	
8(iv)	$\begin{aligned} & 20-2.5 t=-67+12 t \\ & \text { or }-7-6 t=11-9 t \end{aligned}$	M1	Equate x or y coordinates. Must have two terms in both coordinates.
	$t=6$	A1	nfww Ignore other value of t.
	$r=\binom{5}{-43}$ only or $\boldsymbol{r}=5 \mathbf{i}-43 \mathbf{j}$	A1	A0 if further value of \boldsymbol{r} found.
9(i)	Midpoint (1, 2)	B1	May be seen on diagram
	$\text { Gradient of } A B=-\frac{3}{4}$	B1	
	$\begin{aligned} & \text { Gradient of } P M \\ & =\frac{-1}{\text { their } \text { gradient of } A B}=\frac{4}{3} \end{aligned}$	M1	Use $m_{1} \times m_{2}=-1$
	Equation $P M \frac{y-2}{x-1}=\frac{4}{3}$	M1	dep Attempt to find equation of line with their midpoint and their gradient of PM. If $y=m x+c$ used c must be found.
	$y=\frac{4}{3} x+\frac{2}{3}$	A1	
9 (ii)	$s=\frac{4}{3} r+\frac{2}{3}$	B1	FT Insert (r, s) into their linear equation to

Question	Answer	Marks	Guidance
			obtain $s=\ldots$
9(iii)	$(r-1)^{2}+(s-2)^{2}=100 \mathrm{oe}$	B1	FT Use Pythagoras with their $(1,2)$
	Eliminate r or s	M1	From one linear and one quadratic expression. Unsimplified
	$\begin{aligned} & 25 r^{2}-50 r-875=0 \text { oe } \\ & \text { or } \\ & 25 s^{2}-100 s-1500=0 \text { oe } \end{aligned}$	A1	
	$\begin{aligned} & (5 r+25)(5 r-35)=0 \text { oe } \\ & \text { or } \\ & (5 s-50)(5 s+30)=0 \text { oe } \end{aligned}$	M1	Solve three term quadratic Can be implied by correct solution.
	$r=7, s=10$	A1	Do not award if negative values of r and s are also given nfww
	OR Equivalent method such as: $\overrightarrow{M P}=\binom{a}{b} \rightarrow a^{2}+b^{2}=100 \text { and } \frac{b}{a}=\frac{4}{3}$	B1	Using distance $=10$ and gradient $=\frac{4}{3}$
	Eliminate a or b	M1	
	$\begin{aligned} & a^{2}+\left(\frac{4 a}{3}\right)^{2}=100 \\ & \text { or }\left(\frac{3 b}{4}\right)^{2}+b^{2}=100 \end{aligned}$	A1	
	$\rightarrow a=(\pm) 6$ and $b=(\pm) 8$	M1	Solve
	$r=7, s=10$	A1	
10(i)	Quotient rule or product rule	M1	
	$\frac{x-2 x \ln x}{x^{4}}$ or $\frac{x-\ln x .2 x}{x^{4}}$ oe isw	A2/1/0	Minus one each error. Allow unsimplified.
10(ii)	$x-2 x \ln x=0$	M1	Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempt to solve. Must have two terms and obtain $\ln x=k$ only.
	$x=1.65$ awrt or $\sqrt{\mathrm{e}}$	A1	
	$y=0.184 \text { awrt or } \frac{1}{2 \mathrm{e}}$	A1	

Question	Answer	Marks	Guidance
10(iii)	$\frac{\ln x}{x^{2}}=\int \frac{1}{x^{3}}-\frac{2 \ln x}{x^{3}} \mathrm{~d} x$	M1	Integrate their derivative from (i) which must have two terms. Condone omission of $\mathrm{d} x$.
	$\frac{-1}{2 x^{2}}$	A1	Find $\int \frac{1}{x^{3}} \mathrm{~d} x$
	$\int \frac{\ln x}{x^{3}} \mathrm{~d} x=-\frac{1}{4 x^{2}}-\frac{\ln x}{2 x^{2}}+(C)$	A1	oe Rearrange and complete
10(iv)	Insert limits and subtract correctly	M1	dep Must be inserting into two terms in x from (iii). Values explicitly seen if expression is incorrect.
	$\frac{3}{16}-\frac{\ln 2}{8}$ or 0.101 awrt	A1	
11	$(\sqrt{5}-3)(\sqrt{5}+3)=-4$	B1	Seen anywhere
	Attempt formula	M1	
	$x=\frac{-3 \pm 5}{2(\sqrt{5}-3)}$	A1	
	Multiply by their ($\sqrt{5}+3$)	M1	Attempt must be seen with a further line of working. oe
	$x=\sqrt{5}+3$	A1	oe Mark final answer
	$x=\frac{-1(\sqrt{5}+3)}{4}$	A1	oe Mark final answer

